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ABSTRACT

This study examines the impact of assimilating preconvective radiosonde observations obtained by mobile

sounding systems on short-term forecasts of convection. Ensemble data assimilation is performed on a me-

soscale (15 km) grid and the resulting analyses are downscaled to produce forecasts on a convection-

permitting grid (3 km). The ensembles of forecasts are evaluated through their depiction of radar reflectivity

compared to observed radar reflectivity. Examination of fractions skill scores over eight cases shows that, for

four of the cases, assimilation of radiosonde observations nearby to subsequent convection has a positive

impact on the initiation and early evolution during the first 3–4 h of the forecasts, even for the smallest

resolvable scales of the 3-km grid. For the four cases in which positive impacts near the smallest resolvable

scales of the grid are not seen, analysis of the changes to the preconvective environment suggests that sub-

optimal locations of the soundings compared to the location of convective initiation are to blame. The

aggregate positive impacts on forecasts of convection is more clearly seen when spatial scales larger than

individual thunderstorms are examined.

1. Introduction

Convection-permitting numerical weather prediction

(NWP) models are useful to forecasters tasked with

alerting the public of the threat for severe weather (Kain

et al. 2006; Clark et al. 2012). Characteristics of con-

vective storms are strongly tied to the meso- and

synoptic-scale environment in which they develop, so it

is important to continue to explore ways to improve the

depiction of the mesoscale environment in model initial

conditions, even for short-term forecasts (Stensrud et al.

2009; Benjamin et al. 2010; Wandishin et al. 2010;

Romine et al. 2013). Over multiple days in 2013 the

mesoscale environment preceding severe convective

events was sampled by balloon-borne radiosonde

(upsonde) observations released from multiple ground-

based mobile facilities as part of the Mesoscale Pre-

dictability Experiment (MPEX) [see Trapp et al. (2016)

and Weisman et al. (2015) for details]. This study

addresses a goal of MPEX to explore the impacts of

assimilating afternoon preconvective upsonde observa-

tions on the analysis of the mesoscale environment, as

well as their impacts on subsequent short-term (0–9h)

convection-permitting forecasts.

The ensemble Kalman filter (EnKF; Evensen 1994)

is a popular choice for the assimilation of observations

on convection-permitting (1–4 km) model grids com-

pared to traditional variational methods because it is

much easier to implement effectively at these scales and

because it provides flow-dependent relationships among

model variables. Numerous studies have shown that
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EnKF methods can improve forecasts of convection by

assimilating radar data (Snyder and Zhang 2003; Dowell

et al. 2004; Aksoy et al. 2009; Dawson et al. 2012;

Marquis et al. 2014), surface data (Fujita et al. 2007;

Wheatley et al. 2012; Knopfmeier and Stensrud 2013),

satellite data (Jones et al. 2013, 2015), and various

combinations of these data (Zhang et al. 2006; Snook

et al. 2011; Romine et al. 2013; Yussouf et al. 2015;

Wheatley et al. 2015; Jones et al. 2016).

Few studies have focused on the specific impacts of

radiosonde observations on NWP model forecasts of

convection. For the purpose of reducing initial condition

(IC) errors and subsequent short-term forecast errors of

convective precipitation, Fabry and Sun (2010) and

Fabry (2010) suggest that midlevel1 humidity is a par-

ticularly important variable, but uncertainties in tem-

perature, humidity, and winds in low- and midlevels can

greatly impact forecasts of convection. Upsondes, of

course, provide an accurate source of simultaneous

in situ temperature, humidity, and wind measurements

over the depth of the troposphere.

The NWS radiosonde network has a mean spacing of

about 350 km and the radiosondes are released only

twice per day shortly after 2300 and 1100 UTC. As a

result, the conditions a few hours before convective

initiation (CI) over the central United States [typically

peaking from 1800 to 2100 UTC; Carbone et al. (2002);

Carbone and Tuttle (2008); Surcel et al. (2010)] are

usually not sampled by upsondes. The NWS sometimes

releases upsondes during the afternoon, but this only

occurs on a few convective days per year and the lo-

cations are limited to the standard sites. The use of

multiple mobile upsonde systems like those used in

MPEX offer much more flexibility in sampling times

and locations, effectively creating an observing

network capable of sampling subsynoptic-scale

conditions.

This study focuses on the impacts of assimilating the

MPEX upsonde observations into an ensemble of full-

physics NWP model forecasts. The assimilation method

used herein is described in detail in a companion paper

(Hitchcock et al. 2016, hereafter HCK16) but key points

are summarized here. HCK16 also provide a detailed

look at the impacts of MPEX upsonde observations on

forecasts of the 31 May 2013 convective event. They

show a reduction in spurious convection resulting from

lower midlevel humidity and improvements in CI re-

sulting from enhanced convergence along a front. Pre-

sented here is an analysis of additional MPEX cases for

which the preconvective environment was sampled by

the mobile upsonde systems. The goal is to determine if

the positive impacts seen on convective forecasts for the

31May event are seen for other events and to examine if

the physical reasons for the differences in forecasts are

similar to those found in HCK16.

Like in HCK16, the focus of this study is on the

mesoscale (20–200 km) evolution of convective fore-

casts [i.e., on the accuracy of small to large groups of

storms in the forecasts and not on individual thunder-

storm cells (although large supercell thunderstorms can

approach the lower end of the mesoscale spectrum)].

This is partly because the convection-permitting model

grid length used here (3 km) cannot fully resolve indi-

vidual thunderstorms (Bryan et al. 2003) and partly

because no radar or satellite data are assimilated, so

convection develops entirely from the mesoscale forc-

ing in the analysis. Forecasted storms are not expected

to have a one-to-one correspondence with observed

storms in the former case (Stensrud et al. 2009). Fur-

thermore, this study focuses on the impacts of the

MPEX upsondes over regional areas no more than

;200 km 3 200 km, and on CI and early convective

evolution. Tying the changes to the initial environment

to the differences in skill between forecasts becomes

muchmore difficult after 4–5 h in these cases because of

complex convective development and evolution, as is

typical for model errors in the vicinity of deep moist

convection (Zhang et al. 2007). Therefore, although

comparisons in skill are made for the full 9-h forecasts,

the focus is placed on the first 4–5 h of the forecasts

when attempting to link the physical reasons to the

differences in skill.

A description of the MPEX upsonde data, ensemble

data assimilation and modeling system, experimental

design, and methods of evaluating the forecasts is pro-

vided in section 2 and is meant to be supplemented with

the more detailed description provided in HCK16.

Section 3 presents a comparison of the ensemble ana-

lyses and forecasts between the control ensemble and an

ensemble that assimilates the MPEX upsonde data for

individual cases and in an aggregate sense. Section 4

presents a summary and discusses some implications of

the results and future research directions.

2. Data and methods

a. MPEX upsonde data

The mobile upsonde systems in MPEX operated

in the central United States between 15 May and

15 June 2013. On convectively active days, up to four

mobile systems spaced ;20–120km apart released

1 Fabry (2010) defined midlevel as the lower half of the free

troposphere, which starts at 1.5 km AGL in their framework.
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radiosondes a few hours prior to CI.2 The locations for

afternoon preconvective upsondes were chosen partly to

provide validation observations for experimental NWP

model forecasts in a separate study (see Weisman et al.

2015). However, to support a goal of MPEX to measure

the upscale feedbacks of convection to the environment

(see Trapp et al. 2016), the moist unstable air mass that

supported the afternoon and evening storms, as well as

either side of initiating boundaries in the environment,

were sampled whenever possible. Although the loca-

tions of these afternoon upsondes were not guided by

formal targeting methods to optimize impacts from data

assimilation (e.g., Torn and Hakim 2008; Bednarczyk

and Ancell 2015), they were obtained close enough to

subsequent convection in space and time to expect some

impacts from their assimilation on analyses and short-

term forecasts of the convection.

The mobile upsonde systems operated on 17 days

during MPEX [see Table 2 of Trapp et al. (2016)]. The

cases analyzed in this study are those in which at least

three upsondes were released from three separate ve-

hicles at locations separated by at least 20 km, and were

released at least 30min prior to CI in the region of in-

terest (roughly within 200 km of the soundings). There

are 11 such cases that were the subject of the data as-

similation experiments described in the next section.

Three of these 11 cases (4, 11, and 12 June) were ‘‘cor-

rect nulls’’ meaning that all experiments correctly fore-

cast the absence of strong convection in the region of

interest and the soundings had minimal impact on

forecasted convection more than ;200km from the

sounding locations. The remaining eight cases in which

the mesoscale environment was sampled by at least

three MPEX vehicles prior to nearby CI are the subject

of this study (Table 1 and Fig. 1).

b. Data assimilation and NWP modeling system

WRF-ARW, version 3.4.1, configured with the Data

Assimilation Research Testbed (DART) Lanai version

(Anderson and Collins 2007; Anderson et al. 2009) is

used for data assimilation and ensemble forecasting.

The domain used for data assimilation covers the con-

tiguousUnited States (Fig. 2) with 15-km horizontal grid

spacing and 51 vertical levels topped at 50 hPa. The ICs

for a 36-member ensemble are created by downscal-

ing the 0000 UTC Global Ensemble Forecast System

TABLE 1. Description of the eight MPEX cases examined in this study. High precipitation (HP; Moller et al. 1994) and mesoscale

convective system (MCS; Parker and Johnson 2000). The forecasts are initialized approximately 1 h prior to observed CI in the area of

interest.

Date Region

Pre-CI sonde release

times (UTC)

Forecast initial

time (UTC) Primary storm modes

18 May Western KS 1704, 1711, 1802, 1815, 1856 1900 Tornadic HP supercells

19 May Central OK 1858, 1900, 1857 1900 Tornadic supercells

20 May Central OK 1714, 1714, 1718 1800 Tornadic and nontornadic supercells

23 May Western TX 1755, 1759, 1801, 1805 1800 Weakly tornadic HP supercells

27 May Central KS 2000, 2003, 2013, 2059, 2102 2100 Tornadic and nontornadic supercells

28 May Central KS 2000, 2000, 2000, 2004 2000 Nontornadic supercells and disorganized MCS

31 May Central OK 1610, 1801, 1920 2000 Tornadic supercells

8 Jun Southwestern KS 1755, 1800, 1805 1800 Nontornadic supercells and small, bowing MCS

FIG. 1. Locations (3) and times (UTC) of pre-CI radiosonde

releases that are assimilated for the eight cases examined in this

study (color coded by day). Filled contours show gridded com-

posite reflectivity $50 dBZ near the radiosonde locations ap-

proximately 3 h after the final radiosonde release for each day.

2 Herein, composite reflectivity of at least 40 dBZ that persists

for at least 30min is a CI event.
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(GEFS) 50-km analyses on the day of interest, and

forecasts from this GEFS cycle are used as lateral

boundary conditions (LBCs) for the 15-km grid. The

first 18 members of the GEFS are used to create ICs for

two sets of 18 ensemble members. Diversity is created

among the full set of 36 members by altering the tur-

bulence, radiation, and cumulus parameterization

schemes for the second set of 18 members. This config-

uration is the same as that used in HCK16.

As in HCK16, observations are obtained from the

Meteorological Assimilation Data Ingest System

(MADIS; Miller et al. 2007) that include 1) mandatory

and significant levels from the NWS radiosondes; 2)

surface data from aviation routine weather reports

(METARs), marine (ship and buoy) reports, the

Oklahoma Mesonet, and the mesonet observations

from a variety of networks available in the MADIS data;

3) Aircraft Meteorological Data Relay (AMDAR) re-

ports for wind and temperature; and 4) atmospheric

motion vectors (AMVs) derived from satellite observa-

tions. These observations are assimilated every hour from

0100 UTC up to ;5h prior to observed CI using the

ensemble adjustment Kalman filter (EAKF; Anderson

2001) encoded within the DART software. Between ;5

and 1h prior to CI, observations are assimilated every

half-hour. Adaptive inflation (Anderson 2007) is applied

to the ensemble of forecasts prior to the assimilation

step to help maintain spread. All data are assimilated

onto the full 15-km grid except for the Oklahoma and

MADIS mesonet observations, which are assimilated

onto the 15-km grid only over the area covered by the

3-km grid (Fig. 2).

The 36-member ensemble of analyses valid at the final

analysis time are downscaled to create ICs for an en-

semble of forecasts on a convection-permitting grid

(D5 3 km; Fig. 2). Forecasts run on the 15-km grid serve

as the LBCs for the 3-km grid. The initialization time of

the ensemble of forecasts on the 3-km grid is allowed to

vary among the cases (Table 1) and is chosen to allow for

at least 30min of integration time before CI occurs

anywhere in the ;200km by 200km region of interest,

and to allow for at least 1 h of integration before the CI

that occurs closer to the location of the soundings. A set

of 36 forecasts are then run for 9 h on the 3-km grid that

use the same physics options as those for the parent

grid, except no cumulus parameterization is used. The

FIG. 2. The 15-km WRF-DART domain with terrain height (m) contoured used for all

experiments and an example of the 3-km domain used for the 31 May 2013 case (enclosed by

the solid black lines). The domain used for verification of 3-kmmodel fields is enclosed by the

black dashed lines. The area over which statistics for the ensemble analyses are compared to

1200 UTC NWS radiosondes is enclosed by the white lines. The sizes of the 3-km domain

(331 3 331 grid points) and the verification domain (170 3 170 grid points) are the same in

every experiment but are moved to cover the event in question.
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resulting analyses and forecasts compose the control

ensemble for each event. This approach makes the

control ensemble representative of the best possible

forecast that could have been made given all of the

observations available in the operational data stream at

the time.

The set of analyses and forecasts that assimilate the

MPEX upsonde data using the procedures outlined next

are referred to as the MPEX ensemble. Because the

MPEX upsonde data contain observations every 1–2 s,

the data are thinned by defining ‘‘significant’’ levels at

which a substantive change in temperature, dewpoint, or

wind occurs, similar to how the NWS radiosonde data

are routinely thinned (e.g., see Fig. 6 of HCK16). This

helps retain potentially meaningful meteorological fea-

tures in the assimilation while mitigating the detrimen-

tal effects of correlated observation errors (Liu and

Rabier 2002).

The effects of the assimilation on model variables are

localized in the standard way by multiplying the error

covariance estimate in the EAKF with a Gaussian-like

weighted correlation function (Gaspari and Cohn 1999)

that decreases to zero at a specified radius and is 20% of

its original weight at half this radius (Hamill 2006). The

horizontal and vertical radii used for theNWS soundings

and for the MPEX upsondes are approximately 460km

and 8km, respectively, the same as those used for a

similar application in Wheatley et al. (2014) and in the

MPEX ensembles detailed in HCK16.

Consideration of observation errors is required in the

use of the EAKF. The specified observation errors for

all observation types follow those used in Romine et al.

(2013). For radiosondes, the specified standard de-

viation in temperature errors is 1.25K at the surface and

decreases to 0.75K at 875 hPa. The temperature errors

remain at 0.75K up to 350 hPa before increasing again to

1.25K at 250 hPa. The specified standard deviation in

errors for winds is likewise a function of height, in-

creasing from about 1.5m s21 at the surface to about

3m s21 near the tropopause. The humidity errors are

specified through the dewpoint and are a function of RH

(larger dewpoint errors are assigned to measurements

with smaller RH) following the suggestions of Lin and

Hubbard (2004).

Finally, the MPEX upsonde observations are binned

into half-hour windows to accommodate the half-hour

assimilation of data in the 4-h period prior to CI, and the

sonde data are assimilated at its true position, which

effectively takes balloon drift into account. Data from a

single sonde profile may be split into two, occasionally

three, assimilation time windows since more than an

hour can elapse between the sonde release time and the

time the sonde reaches the tropopause.

3. Results

a. Mesoscale ensemble evaluation

To first provide an overview of the assimilation of

standard observations on the mesoscale grid prior to the

assimilation of the MPEX upsonde data, time series of

the ensemble mean bias (model 2 observation), root-

mean-square error (RMSE) of the ensemble mean, en-

semble spread, and consistency ratio (CR) are computed

using assimilated 1200 UTC NWS radiosonde observa-

tions (Fig. 3) and are given by

bias5
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where H is the forward operator that maps the model

prior analysis (1-h forecast is this example) x f
n to the

observation location and type yn; No is the number of

observations; Ne is the number of ensemble members;

and the overbar denotes the ensemble mean. The first

term in Eq. (3) represents the specified observation er-

ror variance. The CR is the ratio of the ensemble prior

variance [square of Eq. (3)] to the ensemble mean

squared error [square of Eq. (2)]. A CR value close to 1

is indicative of optimal ensemble spread (Dowell et al.

2004), with values lower (higher) than 1 indicating an

under- (over-) dispersive ensemble.

Except for near the ground, the ensemble mean is

slightly too warm over most of the troposphere (Fig. 3a),

similar to that seen in Romine et al. (2013). The moist

bias in the prior mean (Fig. 3b) is typical for NWPmodel

forecasts over the United States (Weisman et al. 2008;

Fabry 2010; Coniglio 2012), but is smaller than the mid-

to upper-level humidity bias seen in a similar application

in Romine et al. (2013). The bias in winds is very small at

all levels (Figs. 3c,d).

The CR for all variables at 1200UTC ranges generally

from 0.5 to 1 and is smallest for temperature from just

above the ground to the lower troposphere. This in-

dicates an ensemble that is somewhat underdispersive

overall for variables above the surface at 1200 UTC. In

these types of applications in which observations are

assimilated over multiple cycles, the CR typically starts

small and grows toward 1 as spread develops in the
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ensemble with each assimilation/forecast cycle. Profiles

of the CR evaluated against the MPEX upsonde data,

which were obtained in the 1800–2100 UTC period

(1300–1600 local time) (Table 1), indeed show CR

values larger than those found for the NWS soundings

that were taken in the morning (Fig. 4). The CR for

afternoon lower-tropospheric temperature is generally

between 0.7 and 1 from the surface to 750 hPa. Likewise,

the underdispersion in the mid- to upper-tropospheric

temperatures seen at 1200 UTC (Fig. 3a) becomes an

FIG. 3. Profiles of statistics for prior analyses (1-h forecasts) of (a) temperature (K), (b) dewpoint (K),

(c) u component of wind (m s21), and (d) y component of wind (m s21) compared to assimilated 1200 UTC NWS

radiosonde observations averaged over the area shown in Fig. 2 and binned to 50-hPa intervals. The sample size

in each bin is shown on the right side of each panel. The model bias (mean error) is in green, the RMSE is in red,

ensemble spread (not including the contribution of total spread from the assumed observation error standard

deviation) is in blue, and the consistency ratio (CR) is in black. Reference lines for model bias and the CR are

given by the gray lines at x 5 0 and x 5 1, respectively.
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overdispersion in the 700–550-hPa layer related to very

small RMSE (Fig. 4a). Overall, most of the CR values

range from 0.7 to 1.3, which is characteristic of ensemble

systems for similar applications and various observation

types (Dowell et al. 2004; Wheatley et al. 2012, 2014,

2015). This result gives confidence that the ensemble

and assimilation design provide a sufficiently accurate

background to later drive the convection-permitting

forecasts.

b. Case-by-case skill of convection-permitting
forecasts

Differences between the MPEX and control ensem-

bles on the 3-km grid are assessed through their fore-

casts of simulated composite (or column maximum)

reflectivity (referred to as reflectivity hereafter) com-

pared to gridded reflectivity observations. The gridded

reflectivity observations are created by interpolating the

FIG. 4. As in Fig. 3, but compared to the 30 assimilated MPEX upsonde profiles. Note that profiles are only shown

up to 500 hPa as bin sample sizes are less than 30 for all variables above this level.
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0.018 latitude by 0.018 longitude analyses of reflectivity

produced by the NSSL National Mosaic and Multi-

Sensor Quantitative (NMQ) Precipitation Estimation

system (Zhang et al. 2011) to the 3-km model grid.

Following Schwartz et al. (2010), neighborhood proba-

bilities are produced for each member, and are then

averaged among all members of the ensemble to com-

pute the neighborhood ensemble probabilities [NEPs;

see Eqs. (2)–(5) in Schwartz et al. (2010)]. Neighbor-

hoods are defined around the grid cells to give credit to

forecasts of storms that may not overlap with but are

close to observed storms, unlike traditional verification

metrics [e.g., critical success index or equitable threat

score; Schaefer (1990)]. In this study a square neigh-

borhood3 is constructed around each 3-km grid cell and

numerous neighborhood sizes and reflectivity thresholds

are tested.

The NEPs are computed in order to calculate the

fractions skill score (FSS; Roberts and Lean 2008) for

each ensemble. FSS values range from 0 (no skill) to 1

(perfect), and values of ;0.5 and greater have been

considered to represent forecasts with ‘‘useful’’ skill

(Roberts and Lean 2008), but the absolute values of FSS

are less important here than how the FSS compares

between the ensembles since the goal is to determine

how skill from the MPEX ensemble differs from the

control ensemble. The domain over which FSS is com-

puted is an inner subset of the 3-km grid (Fig. 2). Con-

fidence intervals (95%) for the differences in FSS

between the MPEX and control ensemble forecasts are

computed following the bootstrap resampling technique

described in Hamill (1999). In this application, the en-

semble members serve as the independent samples.

FSS differences between the MPEX and control en-

semble forecasts are first illustrated for a reflectivity

threshold of 40 dBZ for a box width of 8D (;25 km 3
25 km). This box size reduces the influence from errors

with spatial scales close to and smaller than the smallest

resolvable scales of the grid (#; 42 6D; Skamarock

2004), which allows forecast details on scales imme-

diately larger than individual thunderstorms to be

retained—a difficult test for convection-permitting

models. The impacts from the MPEX upsonde data,

and their effects on the FSS, are best understood by

examining each case prior to examining the aggregate

FSS over all the cases.

It should be noted that biased forecasts can sometimes

inflate FSS for smaller spatial scales (Mittermaier and

Roberts 2010). Overall there is a high bias in simulated

reflectivity at the 40-dBZ threshold compared to the

NMQ gridded composite reflectivity. This bias arises

from a tendency for too many forecasted storms (as in

Burghardt et al. 2014) that tend to be slightly too large

(Bryan and Morrison 2012), but the bias may also be

related to the implementation of the Thompson micro-

physics scheme in WRF-ARW (Stratman et al. 2013).

However, as can be seen next in the figures displaying

differences in FSS, the differences in bias between the

MPEX and control ensemble forecasts are small and

generally affect each forecast set equitably, and, there-

fore, do not significantly impact the differences in FSS.

1) POSITIVE IMPACT CASES

HCK16 concentrates on FSS differences for the

31 May convective event. For that case, forecast im-

provements in the first 90min (Fig. 5c) relate to reduced

midlevel humidity that leads to far fewer spurious

storms than in the control ensemble. In the following

90min, the forecast improvements in the MPEX en-

semble relate to more convection closer to where they

were observed along a front that initiates abundant

convection. The assimilation of theMPEXupsonde data

increases convergence along the front leading to better

placement of the storms. Positive improvements in FSS

in at least the first 3 h of the forecasts are also seen for

the 18 May (Fig. 5a), 23 May (Fig. 5b), and 8 June

(Fig. 5d) experiments as shown next.

On 18 May, CI occurred at ;2030 UTC along the

portion of a dryline that was sampled by the MPEX

soundings a few hours earlier (Fig. 6a). The assimilation of

the MPEX upsonde data adjusted the dryline northeast-

ward in a bulge over southwestern Kansas and increased

the water vapor mixing ratio near the top of the boundary

layer to the northwest of the dryline bulge (Fig. 6b). The

increased low-level convergence (not shown, but implied

by the difference vectors in Fig. 6b) and increased low-

level humidity there translated northward with time. As a

result, more ensemble members produce CI closer to the

time and location of observed CI (Fig. 6b), eventually

leading tomore storms forecasted to be closer to the small

cluster of developing supercells observed at 2230 UTC

(210-min forecasts; Fig. 6a). Later in the forecasts, the FSS

for theMPEXensemble stays significantly larger than that

for the control ensemble (Fig. 5a) because many more

members in the MPEX ensemble capture the upscale

growth of the initial cluster of supercells into a small linear

MCS (although both ensembles do not capture the de-

velopment of a separateMCS farther south over southern

Kansas) (Fig. 7).

Improvements in timing and location of CI are also

seen for the 23 May experiment (Fig. 8). On 23 May,

3 Tests comparing the use of a square neighborhood versus a

more strict distance criteria like that used in Hitchcock et al. (2016)

showed negligible differences in the FSS values, as in Ebert (2009).
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about an hour prior to nearby CI, the MPEX upsondes

sampled both sides of an outflow boundary (OFB) that

was moving to the southwest across northwestern Texas

(Fig. 8a). The OFB (and the associated maximum in

low-level convergence) shifts to the southwest close to

where it was observed as a result of assimilating the

MPEX upsonde data (Fig. 8b). The MPEX ensemble

mean more accurately represents the cool outflow air

temperature in a comparison to 2-m temperature ob-

servations (Fig. 8b). Furthermore, the MPEX ensemble

mean is warmer in the boundary layer (and more accu-

rate at 2m AGL) in the region between the dryline and

OFB (Fig. 8b). In this same region the MPEX ensemble

mean water vapor mixing ratio is 1–2 g kg21 larger near

the top of the boundary layer (Fig. 8b). These factors lead

tomoreMPEX ensemblemembers producing CI closer to

the time and location of observed CI (the location of ob-

served CI is denoted on Fig. 8b), leading tomore storms in

the MPEX forecasts closer to the observed storms at 2100

UTC than in the control ensemble (Fig. 8a).

For the 8 June experiment, despite CI occurring

over 150min after the environment was sampled by

the MPEX upsondes, the assimilation of the MPEX

upsonde data produces many more storms closer to

FIG. 5. FSS for theMPEX (red) and control (blue) forecasts, and their differences (MPEX2 control; black line),

for a reflectivity threshold of 40 dBZ and a 8 by 8 gridcell neighborhood (;25 km3 25 km) for the positive impact

cases on (a) 18May, (b) 23May, (c) 31May, and (d) 8 Jun experiments. The gray shading spans the 95% confidence

interval on the FSS differences. The numbers along the bottom of each figure correspond to the number of grid

cells with reflectivity $40 dBZ for the observed reflectivity (black text), the mean number of grid cells with

reflectivity $40 dBZ for the MPEX ensemble forecasts (red text), and the mean number of grid cells with

reflectivity $40 dBZ for the control ensemble forecasts (blue text).
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FIG. 7. Neighborhood probabilities of simulated reflectivity

$40 dBZ using a;25 km3 25 km neighborhood valid at 0100 UTC

19 May (360-min forecasts) for the (a) MPEX and (b) control en-

semble, and (c) their difference (MPEX 2 control). Black contours

show NMQ gridded (observed) reflectivity$40 dBZ. The black box

encloses the area over which FSS is computed for the 18 May case.

FIG. 6. (a) Surface observations and manually drawn front and dry-

line valid 1900 UTC 18May 2013 with temperature (red; 8F), dewpoint
(green; 8F), and sea level pressure (purple; hPa and leading two digits

removed) from NWS observations (bold text) and MADIS and Okla-

homa Mesonet observations (italics). Black contours show NMQ grid-

ded (observed) reflectivity$40 dBZ valid at 2230UTCand color shading

depicts the difference (MPEX 2 control) in neighborhood probabilities

(%) of simulated reflectivity $40 dBZ using a ;25km 3 25km neigh-

borhood valid at 2230 UTC (210-min forecasts). Locations and times

(UTC) of the MPEX radiosonde release times are also shown (red dots

with accompanying red text). (b) Ensemble mean difference (MPEX 2
control) in water vapor mixing ratio (gkg21) and winds (kt; 1kt 5
0.5144ms21) at ;200m AGL valid 1900 UTC (color shading) and en-

semble mean difference in water vapor mixing ratio at ;800m AGL

(green contours every 0.5gkg21 starting at 1gkg21). The approximate

locationsofobservedCI inKansasprior to2200UTCarecircled.Reddots

in both panels show the locations of the MPEX radiosonde releases.
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FIG. 9. (a) As in Fig. 6a, but for surface observations and analysis

valid at 1800UTC8 Jun 2013, observed reflectivity valid at 2130UTC,

and difference in neighborhood probabilities valid at 2130 UTC

(210-min forecasts). (b) As in Fig. 6b, but for ensemble mean differ-

ence (MPEX 2 control) in temperature (8C) and winds (kt) at

;200m AGL valid 1800 UTC (initialization time of the 3-km fore-

casts). The red dashed line depicts a prefrontal wind shift line. Light

(dark) green lines in (b) depict 11 (1.5) g kg21 differences in en-

semble mean water vapor mixing ratio near the top of the boundary

layer (model level 8).

FIG. 8. As in Fig. 6, but for surface observations and analysis

valid 1800 UTC 23 May 2013 and observed reflectivity and

forecasts valid 2100 UTC (180-min forecasts) and ensemble

mean difference (MPEX 2 control) in temperature (8C) and

winds (kt) at ;200 m AGL valid 1800 UTC (initialization time

of the 3-km forecasts). The blue dashed line depicts the ap-

proximate position of an outflow boundary that emanated from

a morning MCS over Oklahoma. Light (dark) green lines in

(b) depict 11 (1.5) g kg21 differences in ensemble mean water

vapor mixing ratio near the top of the boundary layer (model

level 10). Numbers in red (blue) adjacent to black dots depict

the difference in MPEX (control) ensemble posterior analysis

2-m temperature (8C) from the observation at that location.
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where they were observed (Fig. 9a) leading to signifi-

cantly higher FSSs for the 150–240-min forecasts

(Fig. 5d). The convective mode was linear in response to

the strong frontal forcing, with two main convective

lines developing by 2130 UTC that joined shortly

thereafter. TheMPEX ensemble depicts this development

better than the control ensemble as seen with two areas of

positive differences in neighborhood probability in the

vicinity of the two main convective lines (Fig. 9a). In this

case the improvements result from an improved analysis of

low-level temperature and winds in the vicinity of a front–

prefrontal trough (Fig. 9b). The humidity in the upper part

of the boundary layer is 1–2gkg21 higher in the MPEX

ensemble mean near the intersection of the prefrontal

trough and cold front and in the preconvective inflow en-

vironment over southwestern Kansas (Fig. 9b), and this

increased humidity persists in the subsequent forecasts up

to the time of CI. Overall, the improved forecasts of CI

result from both enhanced convergence in the area of the

prefrontal trough–front intersection, and the warming and

moistening of the boundary layer that increases the in-

stability in the inflow air to the south and east of the front.

2) EVALUATION OF NEUTRAL OR NEGATIVE

IMPACT CASES

While the four experiments discussed above (18 May,

23May, 31May, and 8 June) show some positive impacts

from assimilation of the MPEX upsonde data, four of

the experiments (19, 20, 27, and 28 May) show either

little impacts or a degradation in FSS in the first 3–4 h of

the forecasts (Fig. 10).

For the 19 May case three soundings spaced 50–60km

apart were taken in a north–south line ahead of a dryline

and approaching cold front to the west (Fig. 11). Overall

FIG. 10. As in Fig. 5, but for the neutral or negative impact cases on (a) 19, (b) 20, (c) 27, and (d) 28 May.
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differences in ensemble mean analysis temperature,

water vapor mixing ratio, and winds between theMPEX

and control ensembles are smaller than those seen for

the positive impact cases. The ensemble mean analysis

differences at 1900UTC near 800 hPa shown in Figs. 12a

and 12b represent the largest ensemble mean differences

seen for this case at any level. The MPEX ensemble

mean is cooler and more humid near the northernmost

sounding (Figs. 12a and 12b), but the more substantial

cool/moist adjustments are limited to mostly within

;50 km north of the sounding location. The MPEX

ensemble mean analyses are warmer and drier than the

control ensemble mean analyses near the location of

the southern two soundings (Figs. 12a and 12b).

More importantly for the impacts on the forecasts

for the 19 May experiments, the magnitude of the

temperature and mixing ratio adjustments decrease

substantially with time and most of the perturbations

move out of the region where CI occurs over the sub-

sequent few hours (Figs. 12c and 12d). The lack of

improvements in the forecasts for this case could,

therefore, be related to a suboptimal sampling strategy

relative to where CI occurred. The MPEX soundings

were obtained at a longitude about 75–150 km east of

where CI occurred about an hour later (Figs. 12c and

12d). The 19 May MPEX ensemble forecasts approach

a statistically significant degradation in forecast skill

compared to the control ensemble (Fig. 10a) because

CI is incorrectly delayed about 30min in the MPEX

ensemble forecasts in the two northern and westernmost

areas ofCI (Figs. 12c and 12d), which leads to a phase error

in the cluster of storms a few hours later. Negative differ-

ences in neighborhood probability up to 30% are seen in

the vicinity of storms that were undergoing upscale growth

into a small convective system at the time (Fig. 11b). It

is not clear why the small differences in temperature

and mixing ratio in this region of CI lead to delayed

initiation in the MPEX ensemble, but the delayed CI

may be related to the slight warming and drying just

above the boundary layer in the region of observed CI

at 1945 UTC noted in Figs. 12c and 12d.

For the 20 May case there were three MPEX sound-

ings taken relatively close to each other (about 20–25km

apart; Fig. 1), and all of them sampled the very unstable

air mass to the east of a dryline and south of a stationary

front, similar to the 19 May case [see Zhang et al. (2015)

for details of the 20 May event]. Both ensemble mean

temperature and dewpoint in about the lowest 2 km

AGL are very similar between the MPEX and control

ensembles because the errors in the control ensemble

mean are already small (Fig. 13). While the assimilation

of MPEX upsonde data produces 30-min forecasts

that more accurately depict the dry midtropospheric

(;525–400hPa) air, the ;800–700-hPa layer is too dry

(Fig. 13). The assimilation of the humidity data below

700 hPa occurs in the 30-min window centered at

1730 UTC, which is 1 h before the comparison shown in

Fig. 13.While theMPEX ensemble posterior analyses fit

the entire humidity profile better at 1730 UTC as ex-

pected (not shown), the adjustments are quickly swept

out of the area an hour later (by 1830 UTC; Fig. 13).

Likewise, the MPEX ensemble analyses fit the wind

profile better at 1730 UTC, but the differences in en-

semble mean winds an hour later are small over most of

the troposphere because the localized adjustmentsmade

at 1730 UTC move out of the area (hodograph inset to

Fig. 13). The resulting small differences have little

impact on the subsequent forecasts of convection

(Fig. 10b). Again, the lack of FSS improvements for the

MPEX ensemble in the 19May and 20May cases could,

therefore, be related to a suboptimal sampling strategy

of the soundings, but a forecast that already has small

errors in temperature and humidity in the lowest few

kilometers likely contributes to the lack of improve-

ments in the 20 May case.

For the 27 May case five MPEX soundings sampled

a moist, unstable air mass to the east of a diffuse dryline

and to the south of a weak stationary front (Fig. 14).

The degraded FSS in the first few hours of the MPEX

ensemble forecasts (Fig. 10c) results from MPEX

FIG. 11. As in Fig. 6a, but for surface observations and analysis

valid at 1900 UTC 19 May 2013, observed reflectivity valid at

2115 UTC, and difference in neighborhood probabilities valid at

2115 UTC (135-min forecasts).
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ensemble members producing storms about a county

too far north from where the main cluster of storms

was observed (Fig. 14). The MPEX ensemble also has

slightly fewer storms (differences in neighborhood

probabilities of 5%) in the vicinity where storms were

observed (Fig. 14). This 3-h forecast error relates to

errors in CI location that result from an area of

moistening and cooling near the top of the boundary

layer (i.e., low-level destabilization) in the final

MPEX ensemble analysis at 2100 UTC (along the

Kansas–Nebraska border in Figs. 15a and 15b). An

hour into the forecasts, the area of moistening and

cooling moves to the north-northeast into Nebraska

(Fig. 15c). The MPEX ensemble produces many more

storms than the control ensemble along the northern

edge of this moistening around 2215 UTC (area circled

in Fig. 15c), whereas CI was observed about two

counties to the southwest about a half-hour earlier

(Fig. 15c).

The above analysis for the 27 May case highlights that

verifying forecasts of convection that do not overlap

with observed storms can be complex. An argument

could be made that the MPEX ensemble has the better

forecasts at this time because it produces abundant CI

close to the time of observed CI, whereas only a few

members of the control ensemble produce storms by this

FIG. 12. (a) Ensemble mean difference (MPEX 2 control) in temperature (8C) and winds (kt) and (b) water

vapor mixing ratio (g kg21) and winds (kt) at;800 hPa valid at 1900 UTC 19May 2013 (initialization time of the

3-km forecasts). (c),(d) As in (a),(b), but for 90-min forecasts (valid at 2030 UTC) with approximate locations of

observed CI circled in black (CI in the model forecasts occurred about 30–60min later). Locations of the three

MPEX soundings taken around 1900 UTC are shown with the red dots.
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time. But because the abundant CI in the MPEX en-

semble is displaced about two counties away from ob-

served CI, and is outside the 25km3 25 km box used to

compute the FSS, the MPEX ensemble forecasts are

penalized twice: once for producing storms where none

are observed and again for not having storms where they

are observed; the so-called double penalty (Gilleland

et al. 2009) (as seen later, the use of a larger neighbor-

hood alleviates some of this problem). In the first few

hours, the control ensemble forecasts have larger FSS

because they are only penalized for not having storms

close to where they were observed (Fig. 10c).

After a few hours in the 27 May case, the MPEX

ensemble has too few storms close to where the storms

were observed compared to the control ensemble

(Fig. 14). Both ensembles are too slow with developing

the number and intensity of storms in the first few

forecast hours, but the control ensemble initiates

enough storms around 2315 UTC near the location of

the evolving observed storms (Fig. 15d) to provide

some overlap with the location of the observed storms

at 0000 UTC (Fig. 14). These storms in the control

ensemble initiate along a convergence zone associated

with the stationary front (not shown). Through in-

spection of cloud and precipitation mixing ratio fields

among the individual member forecasts, storms try to

develop similarly in the MPEX ensemble forecasts but

are delayed, likely because of warming (and some

drying) in this region in the MPEX ensemble (Figs. 15c

and 15d). As the storms mature and move east, the

degradation in FSS for the MPEX ensemble (Fig. 10c)

continues because of a phase error resulting from these

errors in CI in the first few hours.

The convective scenario for the 28 May case was sim-

ilar to that on 27 May with a weak southwest–northeast-

oriented stationary front across Kansas with four MPEX

soundings (Fig. 1) sampling the moist, unstable air mass

to its south and east. The behavior of the differences in

the preconvective environment is similar to that for the

19May and 20May experiments (not shown for brevity)—

the adjustments decrease in magnitude with time and do

not cover the areas where most of the storms developed

and matured a few hours later. This is partly because few

storms developed near the location of the MPEX sound-

ings in the 3h after the soundings were released (Fig. 1).

Therefore, the lack of FSS improvements seen in the

28 May MPEX ensemble could again be related to a

suboptimal sampling location.

c. Aggregation of fractions skill scores over the eight
cases

1) 25-KM NEIGHBORHOODS

The results presented earlier suggest that when con-

vection develops in the general region encompassed by

the MPEX soundings, convection-permitting forecasts

that are driven by a mesoscale ensemble of analyses that

assimilate those soundings are improved (when consid-

ering scales close to the smallest resolvable scales of the

FIG. 14. As in Fig. 6a, but for surface observations and analysis

valid at 2100 UTC 27 May 2013, observed reflectivity valid at

0000 UTC 28 May, and difference in neighborhood probabilities

valid at 0000 UTC 28 May (180-min forecasts).

FIG. 13. Skew T–logp diagram of a nonassimilated MPEX

sounding released at 1830 UTC 20 May 2013 (black lines) com-

pared to ensemble mean 30-min forecasts from the MPEX (red)

and control (blue) ensembles. The inset in the top right shows

a comparison of the observed and ensemble mean winds in a ho-

dograph over the lowest 6 km AGL.

NOVEMBER 2016 CON IGL IO ET AL . 4315

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:46 PM UTC



grid). Adjustments to the wind and thermodynamic

fields are either smaller or advected out of the region of

CI in the four cases that lack improvements in FSS.4

Because of this case-dependent variability in relative

skill, aggregation of FSS5 for a reflectivity threshold of

40 dBZ and a 25km 3 25km neighborhood for all eight

cases reveals no aggregate improvement in skill for the

FIG. 15. (a) Ensemble mean difference (MPEX2 control) in water vapor mixing ratio (g kg21) and winds (kt)

at ;800 hPa valid at 2100 UTC 27 May 2013 (initialization time of the 3-km forecasts). (b) Ensemble mean

difference (MPEX 2 control) in temperature (8C) and winds (kt) at ;800 hPa valid at 2100 UTC (initialization

time of the 3-km forecasts). (c) As in (a), but for 60-min forecasts (valid at 2200UTC) with approximate locations

of subsequent CI that occurs in several of the MPEX experiment members (but not in the control members) and

approximate location of observed CI indicated. (d) As in (b), but for 120-min forecasts (valid at 2300 UTC) with

approximate locations of subsequent CI that occurs in several of the control experiment members (but not in the

MPEX members) indicated. Locations of the five MPEX soundings taken between 2000 and 2100 UTC are

shown with the red dots.

4 At times, it was necessary to keep all theMPEXsounding vehicles

relatively close to one another to address goals of the MPEX project

other than data assimilation (see Weisman et al. 2015; Trapp et al.

2016), and this sometimes prevented the vehicles from sampling

closer to the expected location of CI.

5 The aggregated FSS is computed by first aggregating the neigh-

borhood probabilities rather than averaging the FSSs over the eight

cases. Prior to aggregation, the forecasts are normalized by the time

CI first occurs in either the MPEX or control experiments to account

for different durations between the start time of the forecasts and the

time of CI (the range of these durations is about 30–100min).
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MPEX experiments, except for a ;45-min window

about 2 h after storms develop in the model (Fig. 16).

Physical reasons for the FSS differences, like those

discussed earlier, are much more difficult to determine

3–4h after CI because of complex storm evolution and

growth in convective coverage, along with an increase in

spread among the convective forecasts. However, it is

worth noting that the aggregated FSS shows that the

MPEX upsonde data had an overall negative impact on

the smallest resolvable scales of the model about 4–5h

after model CI (although statistical significance is not

large; Fig. 16). This is partly because the positive impacts

from the MPEX soundings seen for the 31 May and

8 June cases are largely lost about 3 h after CI; but the

large reversal in relative skill between the 8 JuneMPEX

and control ensemble forecasts about 3 h after CI

(Fig. 5d) also plays a role.

2) 100-KM NEIGHBORHOODS

Recall that the FSSs presented up to this point are

for a single reflectivity threshold (40 dBZ) and neigh-

borhood size (;25 km 3 25 km). The use of larger

neighborhoods results in larger FSS scores as themodel

is given more credit for correct forecasts for storms that

are farther away from the observed storm (Schwartz

et al. 2010). A consequence of using larger neighbor-

hoods (and to a lesser extent, smaller reflectivity

thresholds) is that it allows for a determination of the

forecast skill of convection on different spatial scales

(Ebert 2009; Mittermaier and Roberts 2010). The fol-

lowing examines the relative difference in skill when

relaxing the neighborhood size to ;100 km 3 100 km

and lowering the reflectivity threshold to 30 dBZ

(Figs. 17 and 18), thus the focus shifts from the forecast

skill of meso-g-scale clusters of thunderstorms tomeso-

b-scale groups of thunderstorms or MCSs (e.g.,

Stratman et al. 2013; Pinto et al. 2015). Hereafter, the

evaluations for a reflectivity threshold of 40 dBZ and

a neighborhood size of;25 km3 25 km are referred to

as the 40/25 evaluations and the evaluations for a re-

flectivity threshold of 30 dBZ and a neighborhood size

of ;100 km 3 100 km are referred to as the 30/100

evaluations.

For the 18 May and 23 May cases, the MPEX FSS is

larger than the control FSS for both the 40/25 and 30/100

evaluations (cf. Figs. 5a,b and 17a,b), particularly for the

18 May case. For the 27 May case, except for the 60-min

forecasts, theMPEXFSS is smaller than the control FSS

for both the 40/25 and 30/100 evaluations (cf. Figs. 10c

and 18c).

For some cases, the 30/100 evaluation widens the time

range of the improvement in FSS for the MPEX en-

semble over the control ensemble over that seen for the

40/25 evaluations. For example, for the 28 May case,

the MPEX FSS is larger than the control FSS at

;100–120min for the 40/25 evaluation, but the time

range of improved FSS increases to ;80–160min and

the peak FSS differences in these periods increase

from 0.03 in the 40/25 evaluation to 0.10 in the 30/100

evaluation (cf. Figs. 10d and 18d). For the 8 June

case, the relatively long time window with larger

MPEX FSS in the 40/25 evaluation (;160–280min) is

extended even longer to ;100–360min (cf. Figs. 5d

and 17d).

Furthermore, for some forecast times when the

MPEXFSS is smaller than the control FSS for the 40/25

evaluation, the opposite is true for the 30/100 evalu-

ation. This reversal in relative FSS differences occurs

at ;120–280 min for the 19 May case (cf. Figs. 10a

and 18a), at ;120–160min for the 28 May case (cf.

Figs. 10d and 18d), and at;300–360min for the 8 June

case (cf. Figs. 5d and 17d). There are no instances

when the MPEX FSS is larger than the control FSS

for the 40/25 evaluation but smaller for the 30/100

evaluation.

As expected from the above analysis of the relative

differences in FSS for the two different threshold/

neighborhood combinations, the aggregation of FSS

among the eight cases for the 30/100 evaluation leads

to a longer period when the aggregate MPEX FSS

is larger than the control FSS (Fig. 19). For the

FIG. 16. Aggregation of FSS over the eight cases for a reflectivity

threshold of 40 dBZ and a neighborhood size of ;25 km 3 25 km.

Prior to aggregation, the forecast times among the cases are nor-

malized by the time that CI first occurs in either the MPEX or

control ensembles to account for different durations between the

start time of the forecasts and the time of CI.
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aggregated FSS for the 40/25 evaluation, the MPEX

FSS is larger than the control FSS for a relatively small

period (;100–145min after CI; Fig. 16). However, the

aggregated MPEX FSS for the 30/100 evaluation is

larger than that for the control experiment from the

time of CI to ;260min after CI (Fig. 19).

4. Summary and conclusions

This study examines the impact of assimilating ra-

diosonde observations (‘‘upsondes’’) taken by ground-

based mobile sounding systems ;1–4 h prior to

convective storm development on forecasts of convection

within a WRF-ARW ensemble using the DART data

assimilation software. The upsondes were obtained

as a part of MPEX (Trapp et al. 2016; Weisman et al.

2015). Focus is placed on the impacts of assimilating

the MPEX upsonde data on the initial development

and early evolution of convection. Including the

31 May 2013 convective event over Oklahoma ex-

amined in detail by Hitchcock et al. (2016), the im-

pacts of the MPEX upsondes on ensemble forecasts

of convection are examined for eight convective

events observed during MPEX. At least three MPEX

radiosondes sampled the environment in all eight

cases.

FIG. 17. As in Fig. 5, but for a reflectivity threshold of 30 dBZ and a neighborhood size of;100 km3 100 km. The

numbers along the bottom of each figure correspond to the number of grid cells with reflectivity $30 dBZ for the

observed reflectivity (black text), the mean number of grid cells with reflectivity$30 dBZ for the MPEX ensemble

forecasts (red text), and the mean number of grid cells with reflectivity$30 dBZ for the control ensemble forecasts

(blue text).
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The results suggest that the assimilation of radiosonde

observation profiles into a mesoscale ensemble gener-

ate coherent mesoscale perturbations in temperature,

humidity, and winds in the posterior analyses that persist

in subsequent forecasts. In four cases, these perturba-

tions are found to have positive impacts on the skill of

forecasts of convection even on scales approaching the

limits of what the model can resolve (large supercells

or small groups of cells). This is somewhat surprising

given the rapid growth of errors at small scales in-

duced by deep convection and the short time scales of

intrinsic predictability (Ehrendorfer et al. 1999; Zhang

et al. 2007; Melhauser and Zhang 2012; Cintineo and

Stensrud 2013), but is a testament to the ability of

the mesoscale environment to raise the practical

predictability of convection (Lorenz 1982; Zhang

et al. 2007; Zhang et al. 2015). However, positive

impacts are not seen for every case. Four of the cases

(19, 20, 27, and 28 May) show no improvement

overall and at times show a degradation in forecast

skill of convection for the smallest resolvable scales

of the grid.

Reasons for the differences in forecast impacts

among the eight cases are explored, and a common

characteristic of the four cases with positive impacts

near the smallest resolvable scales of the grid is that

the air mass on both sides of an initiating boundary

was sampled by at least one of the upsondes. A variety of

FIG. 18. As in Fig. 10, but for a reflectivity threshold of 30 dBZ and a neighborhood size of ;100 km 3 100 km.

The numbers along the bottom of each figure correspond to the number of grid cells with reflectivity$30 dBZ for

the observed reflectivity (black text), the mean number of grid cells with reflectivity $30 dBZ for the MPEX

ensemble forecasts (red text), and the mean number of grid cells with reflectivity$30 dBZ for the control forecasts

(blue text).
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boundary types were sampled among these four

positive-impacts cases, including synoptic-scale

fronts (31 May and 8 June), a dryline (18 May), and

an outflow boundary emanating from a morning MCS

(23 May). The cool or dry side of the boundaries was

not sampled in the four cases that show no forecast

improvements. Exploration of the correlation struc-

tures in the lower troposphere indeed show that

higher correlations between variables tend not to

cross significant airmass boundaries (e.g., Fig. 20). A

hypothesis arising from these results is that it is im-

portant to sample the air mass on both sides of the

initiating boundary if forecasts are to be improved.

To address this hypothesis, experiments are per-

formed on the four positive impact cases that are

identical to the MPEX experiments except the

sounding(s) that were taken on the cooler/drier side

of the boundaries are not assimilated (the ‘‘MPEX-

nopostbdy’’ ensemble). Results suggest that assimi-

lating these postboundary data is not necessarily

important as there are no significant differences in

the MPEX-nopostbdy and MPEX ensembles, except

for a short period in the 18 May case in which the

smaller FSSs for the MPEX-nopostbdy ensemble

approach statistical significance around 240min

(Fig. 21).

The main reason for the differences in relative skill

among the cases appears to relate simply to differ-

ences in the magnitudes of the wind and thermody-

namic adjustments among the cases and their location

relative to CI, as shown in sections 3b(1) and 3b(2).

The convection in the cases with no forecast im-

provements developed farther away from the MPEX

soundings than in the cases with positive impacts.

Examination of the ensemble mean adjustments to

variables over the low and midtroposphere show that

1) the ensemble mean fields tend to be adjusted little

because the control ensemble mean state is already

accurate (20 May in particular; e.g., Fig. 20b), 2) tend

to advect away from the CI area (19 May and 20 May

in particular), or 3) are removed from the main re-

gion of CI to begin with (28 May) (the lack of im-

provements seen in the 27 May case are complex and

do not fall neatly into one of the three reasons

above). Overall, the lack of positive impacts, there-

fore, could be related to suboptimal sampling strat-

egies on these days (indeed, the preconvective

sampling strategies on these days were chosen to

address MPEX goals other than testing impacts from

data assimilation).

It is also worth noting that the adjustments to the

midlevel temperature and humidity do not seem to

play as large a role in the improved forecasts for the

18 May, 23 May, and 8 June cases as they did for the

31 May 2013 case shown in Hitchcock et al. (2016). In

the cases examined herein, the adjustments to tem-

perature and humidity above 700 hPa are typically

small or are advected out of the area in which CI oc-

curs. In the 31 May case, the reduced humidity in the

700–500-hPa layer in the MPEX ensemble suppressed

spurious storms that plagued the control experiment,

but in the three positive impact cases shown in the

current study, the improvements in the forecasts are

mostly associated with improved depictions of the flow

and thermodynamics in the lower troposphere and

subsequent improvements in the timing and location

of CI [as is part of the 31 May event as well as shown in

Hitchcock et al. (2016)].

Despite the case dependence to the forecast skill,

aggregate measures of skill (fractions skill score) still

show systematic positive impacts in the first few hours

after convection develops when;25-km neighborhoods

are considered (representing the skill on the smallest

resolvable scales of the grid) and for a longer period

when ;100-km neighborhoods are considered. In other

words, given than CI occurs 1–2h into the forecasts,

these results (and verification using other reflectivity

thresholds and neighborhood sizes not shown) show that

positive impacts for the higher reflectivity thresholds

and smallest resolvable scales tend to be lost after 3–4h

into the forecasts, but the positive impacts can continue

much further into the forecasts if smaller reflectivity

thresholds and/or larger spatial scales are considered in

the verification.

FIG. 19. As in Fig. 16, but for a reflectivity threshold of 30 dBZ and

a neighborhood size of ;100 km 3 100 km.
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As a final note, we deliberately did not assimilate

radar or other remotely sensed data into the initial

model condition so that the impacts of the upsonde

data assimilation on the mesoscale environment and

convective forecasts could be isolated effectively. It is

recognized that assimilation of clear-air radial ve-

locity observations from radar data and retrievals of

temperature and water vapor from ground-based

profiling systems (Wulfmeyer et al. 2015) or satel-

lites (e.g., Jones et al. 2015) may improve the meso-

scale background environment further, and the

relative impacts of upsonde data versus remotely

sensed profiles of the preconvective atmosphere

should be examined in future studies. Furthermore, if

the goal is to closely emulate observed storms in

model initial conditions, then radar data should be

assimilated to introduce hydrometeors and wind

perturbations that represent existing storms into the

model initial conditions (e.g., Dowell et al. 2011;

Snook et al. 2012; Wheatley et al. 2014), as well as

suppress spurious storm development in model fore-

casts. It is clear that assimilation of radar data is vital

to increase the practical predictability of convection

on scales of individual thunderstorms (Dowell et al.

2004; Stensrud et al. 2009; Snook et al. 2012; Jones

et al. 2015; Yussouf et al. 2015). However, in order for

radar data assimilation to be effective, key meteoro-

logical features in the mesoscale background that

support the convection (e.g., fronts, drylines) need

to be represented accurately (Aksoy et al. 2009;

Stensrud and Gao 2010; Dong et al. 2011; Yussouf

et al. 2015). Future studies should examine if the

potential added benefits of nearby sounding assimi-

lation identified in this study is seen in concur-

rent mesoscale/convective-scale assimilation systems

(e.g., Johnson et al. 2015; Yussouf et al. 2015)

that include radar data in the cycled assimilation

procedure.

FIG. 20. Spatial correlation (black contours) between the 800-hPa mixing ratio at the points denoted by

the 3 (locations sampled by radiosondes) and the prior ensemble analyses (1-h forecasts) of 800-hPa mixing ratio

valid at (a) 1900 UTC 19May, (b) 1730UTC 20May, (c) 2100 UTC 27May, and (d) 2000UTC 28May. Increments

(posterior 2 prior) in 800-hPa mixing ratio at the valid time are shown by the color shading.
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